Persamaan suatu garis yang melalui titik (1,2)dan titik(3,4)adalah
Matematika
cahyanabiilah83
Pertanyaan
Persamaan suatu garis yang melalui titik (1,2)dan titik(3,4)adalah
1 Jawaban
-
1. Jawaban MathTutor
Kelas: VIII (2 SMP)
Kategori Soal: Persamaan Garis Lurus
Kata Kunci: persamaan garis, gradien, titik-titik
Pembahasan :
Bentuk umum dari persamaan garis lurus adalah
1. y = mx
2. y = mx + c.
Gradien adalah nilai yang menyatakan kecondongan suatu garis yang dinotasikan dengan m.
Persamaan garis melalui dua buah titik sebarang (x₁, y₁) dan (x₂, y₂) adalah dengan mengsubstitusikan dua buah titik tersebut ke fungsi linear y = ax + b atau menggunakan rumus
[tex] \frac{y-y_1}{y_2-y_1}= \frac{x-x_1}{x_2-x_1} [/tex]
Mari kita lihat soal tersebut.
Ralat Soal.
Tentukan persamaan garis melalui titik-titik (1, 2) dan (3, 4)!
A. y = -x + 1
B. y = 2x - 1
C. y = -2x - 1
D. y = x + 1
Jawab:
Diketahui titik-titik (1, 2) dan (3, 4).
Jika x₁ = 1, y₁ = 2, x₂ = 3, dan y₂ = 4, maka persamaan garis
[tex] \frac{y-y_1}{y_2-y_1}= \frac{x-x_1}{x_2-x_1} [/tex]
⇔ [tex] \frac{y-2}{4-2}= \frac{x-1}{3-1} [/tex]
⇔ [tex] \frac{y-2}{2}= \frac{x-1}{2} [/tex]
⇔ 2(x - 1) = 2(y - 2)
⇔ 2x - 2 = 2y - 4
⇔ 2x - 2 - 2y + 4 = 0
⇔ 2x - 2y - 2 + 4 = 0
⇔ 2x - 2y + 2 = 0
⇔ x - y + 1 = 0
⇔ y = x + 1
Jadi, persamaan garis melalui titik-titik (1, 2) dan (3, 4) adalah y = x + 1.
Jawaban yang benar: D.
Semangat!
Stop Copy Paste!